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Results are presented of  an investigation of perturbation propagation in gas-saturated systems with g~s 
micronuclei formation taken into account. 

Investigation of the motion of gas-liquid systems in domains above and close to saturation pressure reluces,  as 
a rule, to modelling homogeneous media. This is related to the fact that the transition from one state to anotN;r occurs 
instantaneously in the equilibrium thermodynamic theory of phase transformations. 

However, according to [1], the formation of a new phase does not occur instantaneously and the nuclei newly 
being formed (gas bubbles) are "heterophasar' while the system under consideration is assumed not completely 
homogeneous. A "heterophasal" system can be in both the equilibrium and nonequilibrium states. 

It was established by experimental investigations [2-4] that the level and tempo of  the pressure change affect 
micronuclei formation. It is also established that at pressures above the saturation pressure in gas-liquid systems 
hysteresis phenomena are observed on the flow curves which, when taken into account, can result in qualitatively new 
effects for different  transient motion modes. 

This paper is devoted to an investigation of perturbation propagation in gas-saturated systems with gas 
micronuclei formation taken into account. The mathematical model proposed in [4] for  the motion of a gas-liquid 
medium in pipes is used here, which reflects the process being studied sufficiently well. Certain extensions of  the model 
mentioned are also proposed. 

1. The system of differential  equations describing the motion of a gas-liquid system is written analogou:~ly to [5] 

a ( fp~)  aP a (fp) a (fp~) o (fp:~) + = - -  f + zT, + ~ = o. (1) 
o----T-- -5-;-- ax 

After some manipulations, it can be represented as follows 

&__F~ + 1 a ~  _ 1 op + _ L _ ~ ( ~ ) ,  a ( h , ) _  a(fp~) (2) 
Ot 2 8x Po c?x Polo at Ox 

(2) as 

where 

Giving linear laws of  the change in density and pipe area due to pressure, we can write the second equation in 

c~=k/po; 

8p ~ 8w 
- -  poCO - - ,  

Ot Ox 
(3) 

The solution of  the system of nonlinear equations for a given friction law and with gas inclusions taben into 
account can be realized by numerical methods. The approximate solution of  the system (the first equation in (2) and (3)) 
can be obtained analogously to [6]. 

Using a number of  transformations and approximations with (3) taken into account we write the first equation 
(8/Ot ~ -- c o 8/8x, P ~ #oCo w) in (2) (the motion equation) in the form 

aw w) 8~, 
8--T- -k (co q- 8x = ~o~ (w), (4) 

where #o -- I/(Po6); 6 = fo/X. 
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The equation (4) for  the pressure function P can be represented as 

op + (co + =op) o P  , 
ot - -~-x = 13,~ (p), (5) 

where n o = 1/(poCo);/~1 = Co/6" 
Since the f low curve o f  gas- l iquid systems can be represented as a funct ion o f  the gas inclusion concentration 

C and the velocity w, i.e., w, i.e. r(C, w), then (4) and (5) are written as 

o jP 
Ot l w } + ( c ~  0 P 

�9 

For (6) to be solvable, it is necessary to have an equation in the stress r and the concentration C that can be 
represented in the generalized form 

dx (7) 
- f ,_  (",:, C. w, ...), 

dt 

dC = f . ( ~ ,  c, w . . . .  ). (8) 
dt 

The relationships (6)-(8) obtained form a complete system of motion equations for gas-liquid systems in pipes 
in the presence of  gas micronuclei. 

2. Let the dependence of the stress on the concentration and velocity be given analogously to [4] 

4,% (9) 
= - -  - -  (1 + vC) w. 

R 

Assuming the value of the concentration to depend on the pressure level, the tempo of the pressure change, and 
the nonequilibrium of  extraction and dissolution of the gas phase, (8) can be written in the form [4] 

C = [~2 (P - -  Pb) ~" (O - -  X) t ( ) ' f exp t - - t t  dP (10) 
0 b , 0 - ~  dt> 

Since the processes are examined at the pressure P = Pb, then to/~2 < 0. 
Taking (10) and the approximation presented above into account, (9) can be represented in the form 

t ( t - - ! ~  \ d P  (11) 
"c = - -boP  - -  b,P 2 + b2P ! e x p  0 )--~L tit,, 

where 4,% 4p.o.~,~ 4~o.e f~(o--  ~) 
b o -- (1--'TI3.,Pb); b, ; b., = ' 

RPoCo R9oco R9oco 0 

We realize the solution of the system (5) and (11) after certain simplification. If  it is assumed that the function 
dP/dt  1 varies mainly because of the convective component,  then it can be represented in the form dP/d t  1 ~--co0P/0x.  
The system (5) and (11) in P is then written as 

OP OP OP 
- -  2 7 (C o + o~oP) --  O~lP - -  cz2p ~ - - -  czap , 

Ot Ox Ox 

(12) 

where % = boB1; % = bx/~l; % = bd~10Co. 
The solution of  (12) along the characteristics [7] under the condition that at the initial time t = 0, x = ~ a certain 

perturbation P = Po(O is given has the following form 

P exp ( - -  %0  

Po(~) 1 + ct2 Po(~)(1--exp(--~xlt))  

x - - ~ - l - C o t +  a~ l n [ 1 - / -  ~zo Po (~) ( 1 - -  exp ( - -  %t))] 
(:zg- k (7-1 J 

(13) 

(14) 
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Fig. 1. Closed trajectories corresponding to solutions of the 
Lotky--Volterra  system (Pb = 1.5.10 s Pa; flo = 0.0001 m2/N; 0 = 10 see; % 
= 10; #o = 0.01 Pa-sec; #r = 0.0095 Pa-sec; Po = 1000 kg/m3; c o = 1370 
m/see): I) P(0)= 1.3.10 s Pa; C(0) = 0.12; 2) P(0) = 0.6.10 s Pa; C(0) = 0.1; 3) 
P(0) = 1.0-10 s Pa; C(0) = 0.1 (P'-I0 -s should be read on the ordinate axis 
in Figs. 1 and 2). 
Fig. 2. Solution of limit cycle type: V o = 0.002 l/see; ~o --- 0.1 1/sec; r = 
0.05 l/see; x 2 = 0.02 l/(Pa.sec); %1 = 10.1; "/11 = 25; P(0) = 2.105 Pa; C(0) 
=0.15.  

Analysis of the relationship (13) shows that the pressure change depends on the initial perturbation Po{~), the 
pressure of micronuclei formation Pb, the constants ~/,/~2 that take account of  the presence of  micronuclei, where as 
Po(() increases the perturbation damping in the system occurs more rapidly while as the parameters Pb, 7,/~2 increase 
(diminution of a 1) the value of the pressure damps out considerably more slowly than for fluids withom a gas 
micronuclei inclusion content. 

It is seen from (14) that the wave velocity depends substantially on the time 0 of micronuclei formation and the 
tempo A of the pressure change. The presence of the parameter 0 increases the wave propagation velocity end the 
influence of  the nonlinearity on the perturbation wave propagation velocity while the parameter A diminishes the wave 
velocity and the influence of the nonlinearity. 

The possibility of  wave f l ip-f lop can be estimated on the basis of differentiating (14) with respect to the 
parameter ( or analogously to [6]. 

3. Nonstationary motion of an incompressible gas-liquid medium is considered. In this case the process can be 
described by the first equation of the system (2) without taking account of the convective component. Assum ng the 
stress dependence on the concentration to correspond to (9) and the pressure gradient proportional to the velocity ~0P/0x 
= - - P ' / I  = --(8/~e/R 2) w), the motion equation (2) is representable after  simple manipulations as 

@ { P ' } - -  8~t~ ( l - -  ~xe t {  P ' } -  8 / % ? c { P ' } .  (15) 
poR 2 ,% / PoR 2 

It is also assumed that the velocity of micronuclei formation is proportional to the difference between the 
pressure P and the pressure of the beginning of  nuclei formation Pb, where the proportionality factor depends on the 
concentration C in such a manner that the value of the factor diminishes as C increases. 

Taking the above elucidation into account, the equation describing the change in micronuclei concentratign can 
be represented as follows: 

0 dC + C = ~ 5 ( C ) ( P - - P b ) .  (16) 
dt 

Since it was assumed that the coefficient  of  nuclei-formation diminishes as C increases, the dependence B(C) can 
be written in the form --/~~ where the parameter 7 is assumed to equal --%. 

In connection with the above, the system (15) and (16) for  the parameters P' and C takes a form analogous to a 
Lotky--Volterra system dC 

- -  k l C  - -  k 2 P ' C ,  (17) 
dt  

d P '  
- -  k3CP" - -  k~P',  

dt  (18) 
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where 

0 ' poR z ' 9oRZ " 

The system (17) and (18) has a single non-zero stationary solution 

p0 kl _ ~oPb- -1  (19) 

k~ l ~~ 

CO= k~ -- 1 ( l - - . ~ c ) .  (20) 
k3 7o Fo 

The method of  normal modes [8] is utilized to investigate the stability of  the stationary state of  the differential  
equations (17) and (18). Consequently,  the dispersion equation takes the fo rm 

co z + k ,  k4 = 0. (21) 

The stability is associated with the sign of the real parts of  the roots of  the dispersion equations. In the case 
when fl0Pb--1 < 0, #e < #0 or fl~ > 0, #e > #o, the unper turbed state is stable for  the solution w n < 0. When fl~ 
> 0, #r < #0 or fl~ < 0, #e > #0, the real parts vanish, R e w  n = 0, for  each solution while the imaginary parts equal 

I m oJ,~ = • (k lk~) 1 / 2. (22)  

In this case neutral stability holds around the stationary state (19) and (20), where the f requency of  rotation (oscillation) 
corresponds to the limit of  small perturbations and depends on the amplitude. Characteristic phase trajectories of 
periodic solutions are represented in Fig. 1 for  di f ferent  initial values. 

4. In conformi ty  with the main representation about the heterophasal fluctuations it is assumed that the 
formation of  gas micronuclei  for metastable processes depends in a substantial measure on the rates of  origination, 
growth, and disappearance of nuclei of  the newly occurring forms [1]. It can here be assumed that the rate of  gas 
inclusion format ion is proport ional  to the square of  the concentration (this corresponds to a probabil i ty of  pairwise 
cooperation of  micronuclei,  where the proportionali ty factor depends on the pressure) while the rate of  bubble 
disappearance (dissolution) is proportional to their concentration. 

The differential  equation describing the change in concentration under the assumptions made has the form 

dC 
- -  - -  Vo - -  • + n (P ' )  C 2. (23)  

dt 

The quantity ~(P') characterizes the micronuclei cooperation factor. Since it is assumed that the probabil i ty of 
micronuclei connection diminishes as the pressure increases, then tg(P') can be represented as ~(P') = ~I--~.P'. Then (23) 
is wri t ten as dC 

= Vo - -  xoC + • z - -  ~o~C2P '. (24)  
dt  

The dependence of the shear stress on the concentration and velocity can here be represented as follows 

4~o 
-c -- - -  (1 - -  yoC + y~C 2) w. (25) 

R 

Then taking account of  (25) and the assumptions made above, the equation (2) of  fluid motion takes the form 

d P '  
-- k~ (1 - -  %,C -}- ~,1C z) P', (26) 

dt 

where %1 = ks/k4, 711 = 8#oT1/(PoR2k4) �9 
The system (24) and (26) allows of  four  stationary states 

p~ ~ • -4- ] / x ~  - -  4• (27)  
1,2 ~ 0, C1 ~ = - -  

, - 2• a 

C~,4 %' -+- ] / 2  _ 4 y t ,  p ,  V o - -  • + • (C~ , , ) z  (28 )  
= , 3 , 4  ~ 

2"~11 X 2 ( C ~ ,  4)  2 

From physical considerations it is assumed that the quantities C s and ps have real and positive values. Applying 
the method of normal modes, as above, it is easy to obtain the dispersion equation 

(29) 
o) 2 -]- (% - -  2• ~ + 2xoPsC S) o) + k~• ('701 - -  2~J~ C~) P~ : 0. 

316 



Taking account of the stationary states, an analysis of (29) permits considering that the possibility of limit cycle 
origination in a "brusselator" can be realized for the following stationary state 

/" 2 C s=: %I---[/'YOl--4Y11 , ps.:~ Vo.. - -~o  Cs+~i (Cs )  2 

In this case the dispersion equation (29) takes the form 

~ +  2Vo--• ~ k,, . 
co+ ( - ~  (~l - -  4VH)I/2 [Vo - -XoCS+ • (Cs) z] = O. (30) 

C ~ 

It is easy to see that the real part of one of the roots becomes positive if Xo C~ > 2Vo, where this latter 
corresponds to the instability condition in the brusselator circuit [8, 9]. 

The qualitative analysis performed on the system (24) and (26) as well as the dispersion equation (30) 9ermits 
the assertion that the system has a limit cycle under definite conditions, i.e., any initial point in the P'C plane 
approaches the identical periodic trajectory with time. The characteristic curves are represented in Fig. 2. 

Trajectories that correspond to the periodic solution that does not belong to a continuous family of closed 
trajectories and, as a rule, possess a structurally stable neighborhood are a stable limit cycle of an autonomous ~ystem. 

NOTATION 

f, area of the pipe transverse section; p, fluid density; w, mean fluid velocity over the section; P, pressare; P', 
pressure drop; Pb, pressure at which the first gas micronuclei are formed in the fluid; X, wetted perimeter; r, tangential 
stress; x, motion coordinate; t, time; kin, system bulk compression modulus; E, elastic modulus of the pipe mate::ial; 60, 
pipe wall thickness; Po, liquid density at the pressure Po; Co, wave velocity at the pressure Po;/*o, fluid viscosity; #c, 
system viscosity; R, pipe radius; 7, constant; 9, time characterizing the micronuclei formation; A, time characterizing 
the pressure change tempo; f12, a constant; C, gas inclusion concentration; Vo, micronuclei formation rate; ~, micronuclei 
disappearance factor. Indices: s, stationary state; m is mixture, and b is beginning of nuclei formation. 
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